Abstract
In this paper, we provide a comprehensive theoretical analysis of the electronic structure of InAs(111) surfaces with special attention paid to the energy region close to the fundamental bandgap. Starting from the bulk electronic structure of InAs calculated using the PBE functional with the inclusion of Hubbard correction and spin-orbit coupling, we derive proper values for the bandgap, split-off energy, as well as effective electron, light-hole and heavy-hole masses in full consistent with the available experimental results. Besides that we address the projected density of states associated with p orbitals of bulk indium and arsenic atoms. On the basis of optimized atomic surfaces we recover scanning tunneling microscopy images and calculate the band structure and orbital distributions of surface atoms, which along with accessible experimental data make it possible to speculate on the formation of the electron accumulation layer for both As- and In-terminated InAs(111) surfaces. Moreover, these results are accompanied by charge density distribution simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.