Abstract
Additive noise removal from a given signal is an important problem in signal processing. Among the most appealing aspects of this field are the ability to refer it to a well-established theory, and the fact that the proposed algorithms in this field are efficient and practical. Adaptive methods based on anisotropic diffusion (AD), weighted least squares (WLS), and robust estimation (RE) were proposed as iterative locally adaptive machines for noise removal. Tomasi and Manduchi (see Proc. 6th Int. Conf. Computer Vision, New Delhi, India, p.839-46, 1998) proposed an alternative noniterative bilateral filter for removing noise from images. This filter was shown to give similar and possibly better results to the ones obtained by iterative approaches. However, the bilateral filter was proposed as an intuitive tool without theoretical connection to the classical approaches. We propose such a bridge, and show that the bilateral filter also emerges from the Bayesian approach, as a single iteration of some well-known iterative algorithm. Based on this observation, we also show how the bilateral filter can be improved and extended to treat more general reconstruction problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.