Abstract

AbstractCores from the bottom 4.83 m of the Antarctic ice sheet at Byrd Station contain abundant stratified debris ranging from silt-sized particles to cobbles. The nature and disposition of the debris, together with measurements of the physical properties of the inclosing ice, indicate that this zone of dirt-laden ice originated by “freezing-in” at the base of the ice sheet. The transition from air-rich glacial ice to ice practically devoid of air coincided precisely with the first appearance of debris in the ice at 4.83 m above the bed. Stable-isotope studies made in conjunction with gas-content measurements also confirm the idea of incorporation of basal debris by adfreezing of melt water at the ice―rock interface. It is suggested that the absence of air from basal ice may well constitute the most diagnostic test for discriminating between debris incorporated in a melt―refreeze process and debris entrapped by purely mechanical means, e.g. shearing. We conclude from our observations on bottom cores from Byrd Station that “freezing-in” of basal debris is the major mechanism by which sediment is incorporated into polar ice sheets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.