Abstract
AbstractSevere thunderstorms routinely exhibit adjacent maxima and minima in cloud-top vertical vorticity (CTV) downstream of overshooting tops within flow fields retrieved using sequences of fine-temporal resolution (1-min) geostationary operational environmental satellite (GOES)-R series imagery. Little is known about the origin of this so-called “CTV couplet” signature, and whether the signature is the result of flow field derivational artifacts. Thus, the CTV signature’s relevance to research and operations is currently ambiguous. Within this study, we explore the origin of near-cloud-top rotation using an idealized supercell numerical model simulation. Employing an advanced dense optical flow algorithm, image stereoscopy, and numerical model background wind approximations, the artifacts common with cloud-top flow field derivation are removed from two supercell case studies sampled by GOES-R imagers. It is demonstrated that the CTV couplet originates from tilted and converged horizontal vorticity that is baroclinically generated in the upper levels (above 10 km) immediately downstream of the overshooting top. This baroclinic generation would not be possible without a strong and sustained updraft, implying an indirect relationship to rotationally-maintained supercells. Furthermore, it is demonstrated that CTV couplets derived with optical flow algorithms originate from actual rotation within the storm anvils in the case studies explored here, though supercells with opaque above anvil cirrus plumes and strong anvil-level negative vertical wind shear may produce rotation signals as an artifact without quality control. Artifact identification and quality control is discussed further here for future research and operations use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.