Abstract

Recent major discoveries in membrane biophysics hold the key to a modern understanding of the origin of life on Earth. Membrane bilayer vesicles have been shown to provide a multifaceted microenvironment in which protometabolic reactions could have developed. Cell-membrane-like aggregates of amphiphilic molecules capable of retaining encapsulated oligonucleotides have been successfully created in the laboratory. Sophisticated laboratory studies on the origin of life now show that elongation of the DNA primer takes place inside fatty acid vesicles when activated nucleotide nutrients are added to the external medium. These studies demonstrate that cell-like vesicles can be sufficiently permeable to allow for the intake of charged molecules such as activated nucleotides, which can then take part in copying templates in the protocell interior. In this Review we summarize recent experiments in this area and describe a possible scenario for the origin of primitive cells, with an emphasis on the elongation of encapsulated nucleotides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.