Abstract

The debate and controversy concerning the momentum of light in a dielectric medium (Abraham vs Minkowski) is well-known and still not fully resolved. In this paper, we investigate the origin of both momenta in the frame of special relativity by considering photons in media as relativistic quasiparticles. We demonstrate for the first time to the best of our knowledge that the Minkowski form of the photon mass, momentum, and energy follows directly from the relativistic energy conservation law. We introduce a new expression for the momentum of light in a dispersive medium, consistent with the experimentally observed propagation of photons at the group velocity. Finally, the effect of light-induced optical stretching is discussed, which can be used for experimental verification of the existing expressions for the photon momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.