Abstract

Conductivity of certain organic molecules switch to a high-state via electroreduction. Different high-states or multilevel conductivity in organics has been due to different density of high-conducting molecules in a device. We have studied how the population distribution of reduced molecules changes in achieving different conductivity levels. In devices based on a few molecular layers, we have observed that the number of conductivity levels can exceed the number of Langmuir–Blodgett layers. The results showed that the distribution of high-conducting molecules did not increase layer-by-layer, but throughout the volume of the device enabling large number of conductivity levels for higher level (multibit) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.