Abstract

BackgroundThe complexity of the problem of the origin of life has spawned a large number of possible evolutionary scenarios. Their number, however, can be dramatically reduced by the simultaneous consideration of various bioenergetic, physical, and geological constraints.ResultsThis work puts forward an evolutionary scenario that satisfies the known constraints by proposing that life on Earth emerged, powered by UV-rich solar radiation, at photosynthetically active porous edifices made of precipitated zinc sulfide (ZnS) similar to those found around modern deep-sea hydrothermal vents. Under the high pressure of the primeval, carbon dioxide-dominated atmosphere ZnS could precipitate at the surface of the first continents, within reach of solar light. It is suggested that the ZnS surfaces (1) used the solar radiation to drive carbon dioxide reduction, yielding the building blocks for the first biopolymers, (2) served as templates for the synthesis of longer biopolymers from simpler building blocks, and (3) prevented the first biopolymers from photo-dissociation, by absorbing from them the excess radiation. In addition, the UV light may have favoured the selective enrichment of photostable, RNA-like polymers. Falsification tests of this hypothesis are described in the accompanying article (A.Y. Mulkidjanian, M.Y. Galperin, Biology Direct 2009, 4:27).ConclusionThe suggested "Zn world" scenario identifies the geological conditions under which photosynthesizing ZnS edifices of hydrothermal origin could emerge and persist on primordial Earth, includes a mechanism of the transient storage and utilization of solar light for the production of diverse organic compounds, and identifies the driving forces and selective factors that could have promoted the transition from the first simple, photostable polymers to more complex living organisms.ReviewersThis paper was reviewed by Arcady Mushegian, Simon Silver (nominated by Arcady Mushegian), Antoine Danchin (nominated by Eugene Koonin) and Dieter Braun (nominated by Sergey Maslov).

Highlights

  • The complexity of the problem of the origin of life has spawned a large number of possible evolutionary scenarios

  • The suggested "Zn world" scenario identifies the geological conditions under which photosynthesizing zinc sulfide (ZnS) edifices of hydrothermal origin could emerge and persist on primordial Earth, includes a mechanism of the transient storage and utilization of solar light for the production of diverse organic compounds, and identifies the driving forces and selective factors that could have promoted the transition from the first simple, photostable polymers to more complex living organisms

  • We have argued that the "replication first" and "metabolism first" concepts complement rather than contradict each other and have suggested that life on Earth started with a "metabolism-driven replication" [85]

Read more

Summary

Results

This work puts forward an evolutionary scenario that satisfies the known constraints by proposing that life on Earth emerged, powered by UV-rich solar radiation, at photosynthetically active porous edifices made of precipitated zinc sulfide (ZnS) similar to those found around modern deep-sea hydrothermal vents. Under the high pressure of the primeval, carbon dioxide-dominated atmosphere ZnS could precipitate at the surface of the first continents, within reach of solar light. It is suggested that the ZnS surfaces (1) used the solar radiation to drive carbon dioxide reduction, yielding the building blocks for the first biopolymers, (2) served as templates for the synthesis of longer biopolymers from simpler building blocks, and (3) prevented the first biopolymers from photo-dissociation, by absorbing from them the excess radiation. The UV light may have favoured the selective enrichment of photostable, RNA-like polymers. Falsification tests of this hypothesis are described in the accompanying article (A.Y. Mulkidjanian, M.Y. Galperin, Biology Direct 2009, 4:27)

Conclusion
Background
This is a review article on multiple theories of the origin of life
Groth WSH
12. Ponnamperuma C
32. Orgel LE
35. Hazen RM
44. Dawkins R
57. Spirin AS
66. Scott WG
70. Szathmáry E
79. Pross A
81. Kauffman S
ZnS-catalyzed photoreduction of aldehydes and related derivatives
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.