Abstract

We consider the effect of gravitational perturbations from Jupiter on the dynamics of asteroids, when Jupiter is itself perturbed by Saturn. The presence of Saturn introduces a number of additional frequencies into Jupiter's orbit. These frequencies in turn produce chaos in narrow regions on either side of the chaotic zones associated with the mean motion resonances between the asteroids and Jupiter. The resonant arguments of these three-body resonances contain the longitudes of Jupiter and the asteroid together with either the secular frequency g6, or the longitude of Saturn. Resonances involving the longitude of Saturn are analogs of the Laplace resonance in the Jovian satellite system. We show that many three-body resonances involving the longitude of Saturn are chaotic. We give simple expressions for the width of the chaotic region and the associated Lyapunov time. In some cases the chaos can produce a diffusive growth in the eccentricity of the asteroid that leads to ejection of the asteroid on times shorter than the age of the solar system. We give simple estimates for the diffusion time. Finally, we present the results of numerical integrations testing the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.