Abstract

Magmatic evolution on the active volcano of Agrigan in the northern Mariana Island Arc is interpreted as resulting in the production of calc-alkaline andesites by the fractional crystallization of high-alumina basalt. Basaltic products predominate, but the ratio of andesites to basalts increases with time up to an event of voluminous andesitic pyroclastic ejection accompanied by caldera-collapse; post-collapse lavas are entirely basaltic. Moderate iron-enrichment is demonstrated for the volcanic suite, with indications of a progressive, pre-caldera decrease in iron-enrichment; post-caldera lavas display a return to moderate Fe-enrichment. Overall, the lavas are enriched in the LIL elements (K, Rb, Ba, Sr) and depleted in Ti, Mg, Cr, and Ni. From the oldest to the youngest pre-caldera volcanic sequence, the LIL elements increase 3-6X while Ca and Mg decrease by 50% or more. Approximately constant K/ Rb (430±60) and 87Sr/86Sr (0.7032–0.7034) indicate consanguinity of the basalts and the andesites. Cumulate plutonic xenoliths, common in the lavas, are composed of mineral phases also encountered as phenocrysts. The following order of crystallization is indicated: olivine; anorthite-bytownite; clinopyroxene; orthopyroxene and titanomagnetite. Co-existing xenolithic olivines (Fo74–83) and plagioclase (An88–96) are typical of calc-alkaline island-arc assemblages and contrast with assemblages in the tholeiites from the Mariana Trough to the west. The relatively fayalitic composition and low abundances of Ni in olivines and Cr in clinopyroxenes indicate equilibrium with an already-fractionated liquid. These data, along with structural evidence, high Ca in the olivines, and comparison of the observed assemblages with experimental studies, suggests that these xenoliths formed as crystal cumulates at the floor of a shallow (≦ 7 km) crustal magma chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call