Abstract
We have conducted a statistical study 27 coronal mass ejections (CMEs) from January 2007 – June 2008, using the stereoscopic views of STEREO SECCHI A and B combined with SOHO LASCO observations. A flux-rope model, in conjunction with 3D triangulations, has been used to reconstruct the 3D structures and determine the actual speeds of CMEs. The origin and the dynamic evolution of the CMEs are investigated using COR1, COR2 and EUVI images. We have identified four types of solar surface activities associated with CMEs: i) total eruptive prominence (totEP), ii) partially eruptive prominence (PEP), iii) X-ray flare, and iv) X-type magnetic structure (X-line). Among the 27 CMEs, 18.5% (5 of 27) are associated with totEPs, 29.6% (8 of 27) are associated with PEPs, 26% (7 of 27) are flare related, and 26% (7 of 27) are associated with X-line structures, and 43% (3 of 7) are associated with both X-line structures and PEPs. Three (11%) could not be associated with any detectable activity. The mean actual speeds for totEP-CMEs, PEP-CMEs, flare-CMEs, and X-line-CMEs are 404 km s−1,247 km s−1,909 km s−1, and 276 km s−1, respectively; the average mean values of edge-on and broadside widths for the 27 CMEs are 52 and 85 degrees, respectively. We found that slow CMEs (V≤400 km s−1) tend to deflect towards and propagate along the streamer belts due to the deflections by the strong polar magnetic fields of corona holes, while some faster CMEs show opposite deflections away from the streamer belts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.