Abstract

Let $X$ be a Noetherian separated scheme of finite Krull dimension. We show that the layers of the slice filtration in the motivic stable homotopy category $\mathcal{SH}$ are strict modules over Voevodsky’s algebraic cobordism spectrum. We also show that the zero slice of any commutative ring spectrum in $\mathcal{SH}$ is an oriented ring spectrum in the sense of Morel, and that its associated formal group law is additive. As a consequence, we deduce that with rational coefficients the slices are in fact motives in the sense of Cisinski-Deglise and have transfers if the base scheme is excellent. This proves a conjecture of Voevodsky.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.