Abstract

Inexact Newton regularization methods have been proposed by Hanke and Rieder for solving nonlinear ill-posed inverse problems. Every such a method consists of two components: an outer Newton iteration and an inner scheme providing increments by regularizing local linearized equations. The method is terminated by a discrepancy principle. In this paper we consider the inexact Newton regularization methods with the inner scheme defined by Landweber iteration, the implicit iteration, the asymptotic regularization and Tikhonov regularization. Under certain conditions we obtain the order optimal convergence rate result which improves the suboptimal one of Rieder. We in fact obtain a more general order optimality result by considering these inexact Newton methods in Hilbert scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.