Abstract

The stabilization using a stable compensator does not introduce additional unstable zeros into the closed-loop transfer function beyond those of the original plant, so it is a desirable compensator, the price is that the compensator’s order will go up. This note considered the order of stable compensators for a class of time-delay systems. First, it is shown that for single-loop plants with at most one real right-half plane zero, a special upper bound for the minimal order of a strongly stabilizing compensator can be obtained in terms of the plant order; Second, it is shown that approximate unstable pole-zero cancellation does not occur, and the distances between distinct unstable zeroes are bounded below by a positive constant, then it is possible to find an upper bound for the minimal order of a strongly stabilizing compensator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.