Abstract
The order of approximation for Newman-type rational interpolation to |x| is studied in this paper. For general set of nodes, the extremum of approximation error and the order of the best uniform approximation are estimated. The result illustrates the general quality of approximation in a different way. For the special case where the interpolation nodes are\(x_i = \left( {\frac{i}{n}} \right)^r (i = 1,2, \cdots ,n;r > 0)\), it is proved that the exact order of approximation is\(O\left( {\frac{1}{n}} \right),O\left( {\frac{1}{{n\log n}}} \right) and O\left( {\frac{1}{{n^r }}} \right)\), respectively, corresponding to 0 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.