Abstract

We recently reported that very compact coupled-cluster wave functions may be generated by selecting the most important configurations, by weight, from the full coupled-cluster wave function. Here, we consider how the choice of orbitals may affect these wave functions in the case of the symmetric dissociation of H2O. We employ unrestricted Hartree–Fock and complete-active-space self-consistent-field orbitals, as well as natural orbitals derived from a coupled-cluster singles and doubles wave function. For a given accuracy, some choices of orbitals can reduce the size of configuration interaction wave functions, but they have little effect on the weight-selected coupled-cluster wave functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.