Abstract

Abstract The dark matter content of the ultra-diffuse galaxy NGC 1052-DF2, as inferred from globular cluster (GC) and stellar kinematics, carries a considerable amount of uncertainty, with current constraints also allowing for the complete absence of dark matter. We test the viability of such a scenario by examining whether in a “baryon-only” mass model the observed GC population experiences rapid orbital decay due to dynamical friction. Using a suite of 50 multi-GC N-body simulations that match observational constraints on both the stellar component of NGC 1052-DF2 and its GC population but differ in the initial line-of-sight positions and the tangential velocities of the GCs, we show that there is a substantial amount of realization-to-realization variance in the evolution of the GCs. Nevertheless, over ∼10 Gyr, some of the GCs experience significant orbital evolution. Others evolve less. A combination of reduced dynamical friction in the galaxy core and GC–GC scattering keeps the GCs afloat, preventing them from sinking all the way to the galaxy center. While the current phase-space coordinates of the GCs are not unlikely for a baryon-only mass model, the GC system does evolve over time. Therefore, if NGC 1052-DF2 has no dark matter, some of its GCs must have formed farther out, and the GC system must have been somewhat more extended in the past. The presence of a low-mass cuspy halo, while allowed by the kinematics, seems improbable, as significantly shorter inspiral timescales in the central region would quickly lead to the formation of a nuclear star cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call