Abstract
Abstract A multi layered, feed forward Artificial Neural Network (ANN) was used to study the effect of feed mean size, collector dosage and impeller speed on flotation recovery and grade. The results of 30 flotation experiments conducted on Jordanian siliceous phosphate were used for training the network while another 10 experiments were used for validation. Simulation results showed that a four layer network with a [9 11 5 9 2] architecture was the one that gave the least mean squared error (MSE). Using this ANN to optimize the flotation process showed that the optimum flotation parameters were 321.28 μm for the feed mean size, 0.7354 kg/TOF for the collector dosage and 1225.25 RPM for the impeller speed. Studying the effect of these parameters on flotation recovery and grade was done by analysis of variance, ANOVA. The results showed that grade was more sensitive to changes in flotation parameters than was recovery. They also showed that changes in collector dosage had a more significant effect on flotation grade and recovery than did changes in feed mean size or impeller speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of China University of Mining and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.