Abstract

We report on a theoretical study wherein we considered a large number of ordered two-dimensional porous pillar arrays with different pillar shapes and widely varying external porosity and calculated the flow resistance and the band broadening (under retentive conditions) over the complete range of practical velocities using a commercial computational fluid dynamics software package. It is found that the performance of the small porosity systems is very sensitive to the exact pillar shape, whereas this difference gradually disappears with increasing porosity. The obtained separation impedances are very small in comparison to packed bed and monolithic columns and decrease with increasing porosity. If accounting for the current micromachining limitations, a proper selection of the exact shape and porosity even becomes more critical, and different design rules are obtained depending on whether porous or non-porous pillars are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.