Abstract

We study the control of a Brownian motion (BM) with a negative drift, so as to minimize a long-run average cost objective. We show the optimality of a class of reflection controls that prevent the BM from dropping below some negative level r, by cancelling out from time to time part of the negative drift; and this optimality is established for any holding cost function h(x) that is increasing in x ? 0 and decreasing in x ? 0. Furthermore, we show the optimal reflection level can be derived as the fixed point that equates the long-run average cost to the holding cost. We also show the asymptotic optimality of this reflection control when it is applied to production-inventory systems driven by discrete counting processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.