Abstract

We consider the channel sensing problem arising in opportunistic scheduling over fading channels, cognitive radio networks, and resource constrained jamming. The same problem arises in many other areas of science and technology as it is an instance of restless bandit problems. The communication system consists of N channels. Each channel is modeled as a multi-state Markov chain. At each time instant a user selects one channel to sense and uses it to transmit information. A reward depending on the state of the selected channel is obtained for each transmission. The objective is to design a channel sensing policy that maximizes the expected total reward collected over a finite or infinite horizon. This problem can be viewed as an instance of restless bandit problems, for which the form of optimal policies is unknown in general. We discover sets of conditions sufficient to guarantee the optimality of a myopic sensing policy; we show that under one particular set of conditions the myopic policy coincides with the Gittins index rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.