Abstract

This paper addresses the optimal transmission scheduling problem in hybrid energy supply systems with the save-then-transmit protocol, where the energy supply of the transmitter comes from both the primary battery and the energy harvester. We first consider minimizing the outage probability for a given amount of battery energy by optimizing the saving factor. It is demonstrated that harvesting external energy is unnecessary for a large spectral efficiency requirement. Then, we consider joint packet scheduling and saving factor optimization to the battery energy consumption minimization (BECM) problem in both single packet arrival and burst packet arrival scenarios. Both optimal and suboptimal offline policies with full information on the traffic profile, the harvesting power, and the channel state are developed. We also propose an optimal online policy in the case that only causal information is available. Numerical results are presented that validate the effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.