Abstract

This article is concerned with a dynamic blocking problem, originally motivated by the control of wild fires. It is assumed that the region \({R(t) \subset \mathbb {R}^2}\) burned by the fire is initially a disc, and expands with unit speed in all directions. To block the fire, a barrier Γ can be constructed in real time, so that the portion of the barrier constructed within time t has length ≤ σt, for some constant σ > 2. We prove that, among all barriers consisting of a single closed curve, the one which minimizes the total burned area is axisymmetric, and consists of an arc of circumference and two arcs of logarithmic spirals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.