Abstract

We show that the Bernstein polynomial basis on a given interval is “optimally stable,” in the sense that no other nonnegative basis yields systematically smaller condition numbers for the values or roots of arbitrary polynomials on that interval. This result follows from a partial ordering of the set of all nonnegative bases that is induced by nonnegative basis transformations. We further show, by means of some low–degree examples, that the Bernstein form is not uniquely optimal in this respect. However, it is the only optimally stable basis whose elements have no roots on the interior of the chosen interval. These ideas are illustrated by comparing the stability properties of the power, Bernstein, and generalized Ball bases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.