Abstract

The paper deals with theoretical considerations on the conception and optimization of long-rod penetrators with regard to bending strain and penetration efficiency. In a first step we describe a method allowing to design long penetrators in such a manner that given values of bending stress and deflection are met if the rods are subjected to lateral forces. On the assumption of a constant lateral acceleration this results in rods with various dimensions; the aspect ratio remarkably does not remain constant. Then these penetrators are examined for maximum penetration efficiency while considering rods of equal energy. For the case studied the procedure results in an optimum velocity of about 2700 m/s. This demonstrates a fundamental difference in comparison to the optimization process with L/D-scaled penetrators where a much lower optimum velocity (2300 m/s) is obtained. In comparison to the reference penetrator (L/D=34, v=1800 m/s) the optimum penetrator — still at constant stress level and at an impact velocity of 2700 m/s — has of course a reduced mass, but also a reduced length and diameter showing an aspect ratio of 40. The perforation power could be increased by some 17%. On the other hand, the linearly scaled penetrator at constant energy only shows an increase of about 7% in penetration capability if the impact velocity reaches its optimum value at 2300 m/s. The optimization procedure of the energy-efficient penetration of constant-stress projectiles leads to an optimal velocity well in the hypervelocity regime. Furthermore, the special design of the penetrators with constant stress level results in a gain of penetration efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.