Abstract

We use probabilistic methods to characterise time-dependent optimal stopping boundaries in a problem of multiple optimal stopping on a finite time horizon. Motivated by financial applications, we consider a payoff of immediate stopping of “put” type, and the underlying dynamics follows a geometric Brownian motion. The optimal stopping region relative to each optimal stopping time is described in terms of two boundaries, which are continuous, monotonic functions of time and uniquely solve a system of coupled integral equations of Volterra-type. Finally, we provide a formula for the value function of the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.