Abstract
In recent literature, a new class of unbiased Monte Carlo estimators have been proposed, which is based on truncating a telescopic representation of the expectation of a functional of the stochastic process at an independent random level. The generality of the method lies in that it can translate any sequence of asymptotically unbiased estimators into a truly unbiased estimator. However, since any independent truncation level can lead to an unbiased estimator, its optimal choice is crucial for the successful implementation of this unbiased Monte Carlo method in financial engineering applications. We develop a novel efficient algorithm to locate the optimal distribution of the random truncation level in general, which answers positively an open question posted in Rhee and Glynn (2015), and we rigorously establish the convergence and optimality of the algorithm and derive its exact complexity. Our algorithm has a much lower complexity as compared to the literature, and numerical examples confirm our findings. The proposed algorithm is shown to be also applicable to optimization problems arising in contextual areas of supply chain management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.