Abstract

Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling has become the de facto standard approach to study alterations in RNA transcription, processing or decay. Regardless of advances in the experimental protocols and techniques, every experimentalist needs to specify the key aspects of experimental design: For example, which protocol should be used (biochemical separation vs. nucleotide conversion) and what is the optimal labeling time? In this work, we provide approximate answers to these questions using the asymptotic theory of optimal design. Specifically, we investigate, how the variance of degradation rate estimates depends on the time and derive the optimal time for any given degradation rate. Subsequently, we show that an increase in sample numbers should be preferred over an increase in sequencing depth. Lastly, we provide some guidance on use cases when laborious biochemical separation outcompetes recent nucleotide conversion based methods (such as SLAMseq) and show, how inefficient conversion influences the precision of estimates. Code and documentation can be found at https://github.com/dieterich-lab/DesignMetabolicRNAlabeling.

Highlights

  • Changes in gene expression are frequently observed in pathological conditions

  • We address several key aspects of experimental design: 1) The optimal labeling time, 2) the number of replicate samples over sequencing depth and 3) the choice of experimental protocol

  • We provide approximate answers to these questions using asymptotic theory of optimal design

Read more

Summary

Introduction

Changes in gene expression are frequently observed in pathological conditions. In the simplest model [1], steady state RNA levels are governed by synthesis (transcription) and degradation rates (RNA stability). A paradigm is the generation of the hypoxic response in pathological conditions such as heart insufficiency [2] and fast growing tumors [3]. The transcription of specific target genes is induced under hypoxic conditions by hypoxia inducible factor 1 (HIF1) [5], which is composed of a stable β-subunit and an oxygen labile α-subunit [6]. Different RNA binding proteins such as HuR and TTP as well as miRNAs regulate the stability of their cognate target mRNAs dependent on oxygen availability [7] and contribute to changes in gene expression profiles

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.