Abstract
This paper provides a geometrical derivation of the hybrid minimum principle (HMP) for autonomous impulsive hybrid systems on Riemannian manifolds, i.e., systems where the manifold valued component of the hybrid state trajectory may have a jump discontinuity when the discrete component changes value. The analysis is expressed in terms of extremal trajectories on the cotangent bundle of the manifold state space. In the case of autonomous hybrid systems, switching manifolds are defined as smooth embedded submanifolds of the state manifold and the jump function is defined as a smooth map on the switching manifold. The HMP results are obtained in the case of time invariant switching manifolds and state jumps on Riemannian manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.