Abstract
Optimal numerical approximation of bounded linear functionals by weighted sums in Hilbert spaces of functions defined in a domain B ⊂ C or B ⊂ R m, invariant in rotation or translation (e.g. circle, circular annulus, ball, spherical shell, strip of the complex plane) and equipped with inner product invariant in rotation or translation are considered. The weights and error functional norms for optimal approximate rules based on nodes located angle-equidistant on concentric spheres or circles of B, for B invariant in rotation, and on nodes located equispaced on in B lying line, for B invariant in translation, are explicitly given in terms of the kernel function of the Hilbert space. A number of concrete Hilbert spaces satisfying the required conditions are listed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.