Abstract

In this work, we examine the complex structured Fractional Perturbed Gerdjikov-Ivanov equation (FPGIE), which describes the propagation of optical pulses with perturbation effects. This model finds applications in optical fibers, especially in photonic crystal fibers. We are discovered novel and unique optical soliton solutions using the modified Extended Direct Algebraic Method (mEDAM), which has never been used with this model previously. As a result, a hierarchy of traveling wave solutions including singular kink, periodic, solitary kink, and rogue-shaped soliton solutions, etc., are derived. Some obtained solutions are discussed graphically based on numerical values of some parameters related to the solution. The results add new and unique soliton types to the model and demonstrate how they interact and impact the system’s overall dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.