Abstract

Wyner-Ziv (WZ) coding has recently been proposed as a low encoding complexity alternative to traditional DPCM coding for compression of sources with memory, in particular, in applications like multimedia compression. The viability of this alternative approach clearly depends on the compression performance of WZ coding compared to that of DPCM coding. In an attempt to understand the performance gap between WZ coding and DPCM coding, this paper studies the operational rate-distortion performance of WZ coding, using uniform scalar quantization followed by perfect Slepian-Wolf coding, for compression of a Laplace-Markov (LM) source. It is shown that at low rates or for weakly correlated LM sources, WZ coding is indeed a competitive alternative to DPCM coding. However, at high rates the performance gap becomes non-negligible for strongly correlated LM sources. In order to reduce the gap at high rates, a hybrid approach that combines DPCM coding and WZ coding is further investigated. It is shown that the hybrid approach is indeed competitive to DPCM coding at all rates even for strongly correlated LM sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.