Abstract
The paper is devoted to the investigation of topological properties of space mappings. It is shown that orientation-preserving mappings $ f:D \to \overline {{\mathbb{R}^n}} $ in a domain $ D \subset {\mathbb{R}^n} $ , n ≥ 2; which are more general than mappings with bounded distortion, are open and discrete if a function Q corresponding to the control of the distortion of families of curves under these mappings has slow growth in the domain f (D), e.g., if Q has finite mean oscillation at an arbitrary point y 0 ∈ f (D).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.