Abstract
Rayleigh–Bénard convection in a horizontal layer of nanofluid in the presence of uniform vertical magnetic field is investigated by using Galerkin weighted residuals method. The model used for the nanofluid describes the effects of Brownian motion and thermophoresis. Linear stability theory based upon normal mode analysis is employed to find expressions for Rayleigh number and critical Rayleigh number. The boundaries are considered to be free–free, rigid–rigid and rigid–free. The influence of magnetic field on the stability is investigated and it is found that magnetic field stabilizes the fluid layer. It is also observed that the system is more stable in the case of rigid–rigid boundaries and least stable in case of free–free boundaries. The expression for Rayleigh number for oscillatory convection has also been derived for free–free boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.