Abstract

The thermal instability of the plane Poiseuille flow as a consequence of the effect of viscous dissipation is investigated. No external temperature difference is assumed in the environment; the lower boundary is considered adiabatic, while the upper boundary is isothermal. Thus, the sole cause of the unstable thermal stratification is the flow rate, through the volumetric heating induced by the viscous dissipation. A linear stability analysis is carried out numerically by the analysis of normal modes perturbing the basic flow with different inclinations. The study of cases with different Prandtl numbers and Gebhart numbers suggests that the most unstable perturbations are the longitudinal rolls, namely the normal modes with a wave vector perpendicular to the basic flow direction. A possible comparison with the hydrodynamic instability of the plane Poiseuille flow, described by the Orr–Sommerfeld eigenvalue problem is proposed. This comparison, when referred to high values of the Prandtl number, reveals that the dissipation instability may be effective at a Reynolds number smaller than that needed for the onset of the hydrodynamic instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.