Abstract

We study a standard two-parameter family of area-preserving torus diffeomorphisms, known in theoretical physics as the kicked Harper model, by a combination of topological arguments and KAM-theory. We concentrate on the structure of the parameter sets where the rotation set has empty and non-empty interior, respectively, and describe their qualitative properties and scaling behaviour both for small and large parameters. This confirms numerical observations about the onset of diffusion in the physics literature. As a byproduct, we obtain the continuity of the rotation set within the class of Hamiltonian torus homeomorphisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.