Abstract

We consider the one-sided exit problem for stable Levy process in random scenery, that is the asymptotic behaviour for $T$ large of the probability $$\mathbb{P}\Big[ \sup_{t\in[0,T]} \Delta_t \leq 1\Big] $$ where $$\Delta_t = \int_{\mathbb{R}} L_t(x) \, dW(x).$$ Here $W=(W(x))_{x\in\mathbb{R}}$ is a two-sided standard real Brownian motion and $(L_t(x))_{x\in\mathbb{R},t\geq 0}$ the local time of a stable Levy process with index $\alpha\in (1,2]$, independent from the process $ W$. Our result confirms some physicists prediction by Redner and Majumdar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.