Abstract

Type I chaperonins are fundamental protein folding machineries that function in eubacteria, mitochondria and chloroplasts. Eubacteria and mitochondria contain chaperonin systems comprised of homo-oligomeric chaperonin 60 tetradecamers and co-chaperonin 10 heptamers. In contrast, the chloroplast chaperonins are heterooligomeric tetradecamers that are composed of two subunit types, α and β. Additionally, chloroplasts contain two structurally distinct co-chaperonins. One, ch-cpn10, is probably similar to the mitochondrial and bacterial co-chaperonins, and is composed of 10 kDa subunits. The other, termed ch-cpn20 is composed of two cpn10-like domains that are held together by a short linker. While the oligomeric structure of ch-cpn10 remains to be elucidated, it was previously suggested that ch-cpn20 forms tetramers in solution, and that this is the functional oligomer. In the present study, we investigated the properties of purified ch-cpn10 and ch-cpn20. Using bifunctional cross-linking reagents, gel filtration chromatography and analytical ultracentrifugation, we show that ch-cpn10 is a heptamer in solution. In contrast, ch-cpn20 forms multiple oligomers that are in dynamic equilibrium with each other and cover a broad spectrum of molecular weights in a concentration-dependent manner. However, upon association with GroEL, only one type of co-chaperonin–GroEL complex is formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.