Abstract

The classical hook length formula counts the number of standard tableaux of straight shapes. In 1996, Okounkov and Olshanski found a positive formula for the number of standard Young tableaux of a skew shape. We prove various properties of this formula, including three determinantal formulas for the number of nonzero terms, an equivalence between the Okounkov-Olshanski formula and another skew tableaux formula involving Knutson-Tao puzzles, and two $q$-analogues for reverse plane partitions, which complement work by Stanley and Chen for semistandard tableaux. We also give several reformulations of the formula, including two in terms of the excited diagrams appearing in a more recent skew tableaux formula by Naruse. Lastly, for thick zigzag shapes we show that the number of nonzero terms is given by a determinant of the Genocchi numbers and improve on known upper bounds by Morales-Pak-Panova on the number of standard tableaux of these shapes.Mathematics Subject Classifications: 05A15, 05A15, 05A19, 05A05

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.