Abstract

[1] The ionospheric heating facility of the High Frequency Active Auroral Research Program (HAARP) has been used extensively in the last 3 years for injection of ELF/VLF waves into the magnetosphere via modulated heating of the overhead auroral electrojet currents. Of particular interest are waves that are observed to be nonlinearly amplified after interaction with hot plasma electrons in the Earth's radiation belts. Past results have shown HAARP to be an effective platform for controlled studies of wave particle interactions in the Earth's magnetosphere. A summary of the experimental results is provided in the context of dependencies on geomagnetic conditions and transmitter parameters. It is deduced that the primary variable that is associated with successful ground observations of HAARP-induced magnetospheric amplification is availability of magnetospheric wave guiding structures. Such structures are found to be most prevalent under quiet geomagnetic conditions following a disturbance when the plasmapause extends to the latitude of the HAARP facility or higher. Strong electrojet currents and high amplitudes of generated ELF/VLF signals observed on the ground are poor indicators of observation probability on a day to day basis although variation of these variables can be important on minute and second timescales. Frequency-time formats with continuously increasing ELF/VLF frequency show preferential amplification as predicted by nonlinear theory of electron trapping. Amplification of signals is also found to be possible for signals with noncoherent bandwidths of up to 30 Hz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.