Abstract

The aim of this article is to discuss the observability properties and observer design for the attitude of a rigid body, under conditions of partial inertial sensing. In particular, we introduce an observability analysis tool for the attitude dynamics when only accelerometer and gyroscope measurements are available, as in several robotics applications. In various scenarios, in fact, the measurement of the magnetic field via a magnetometer is unreliable, due to magnetic interferences. Herein, we first focus on a formal observability analysis, which reveals that the target dynamics is weakly locally observable , but not first-order observable. The lack of first-order observability prevents standard observers from achieving global convergence. Therefore, we discuss a more suitable approach for observer design to deal with this problem. The proposed approach is validated by providing numerical and experimental results. The former show that the proposed approach is able to achieve convergence (final error 0.004 $\%$ ). Experiments validate our inference about observability and show the improvements brought by the proposed approach concerning the error convergence (final error 0.15 $\%$ ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.