Abstract

A porosity-dependent nonlinear postbuckling analysis for microplates prepared from a porous functionally graded material (PFGM) is performed based on the modified couple stress theory of elasticity (MCSTE). To accomplish this purpose, the modified couple stress-based nonlinear differential equations are derived by third-order shear deformation plate theory (TSDPT). To extract PFGM microplate effective mechanical properties, a power-law function is utilized which is capable of incorporating porosity dependency and material gradient, simultaneously. Thereafter, the non-uniform rational B-spline (NURBS)-based isogeometric analytical method is employed as an effective discretization method which could satisfy C−1 continuity condition. It is demonstrated that the gap between equilibrium paths relevant to various couple stress length scales reduces by going deeper in postbuckling regime. Also, one can see that for certain porosity and material property gradient index values, by boundary condition transformation from simply supported to clamped, the contribution of the effect of couple stress size in PFGM microplate postbuckling response becomes more significant, especially for a higher maximum deflection values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.