Abstract

The barycentric forms of polynomial and rational interpolation have recently gained popularity, because they can be computed with simple, efficient, and numerically stable algorithms. In this paper, we show more generally that the evaluation of any function that can be expressed as r(x)=sum _{i=0}^n a_i(x) f_ibig /sum _{j=0}^m b_j(x) in terms of data values f_i and some functions a_i and b_j for i=0,ldots ,n and j=0,dots ,m with a simple algorithm that first sums up the terms in the numerator and the denominator, followed by a final division, is forward and backward stable under certain assumptions. This result includes the two barycentric forms of rational interpolation as special cases. Our analysis further reveals that the stability of the second barycentric form depends on the Lebesgue constant associated with the interpolation nodes, which typically grows with n, whereas the stability of the first barycentric form depends on a similar, but different quantity, that can be bounded in terms of the mesh ratio, regardless of n. We support our theoretical results with numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.