Abstract

In this work, we study the penalty finite element approximation of the stationary power law Stokes problem. We prove uniform convergence of the finite element solution with respect to the penalized parameter under classical assumptions on the weak solution. We formulate and analyze the convergence of a nonlinear saddle point problem by adopting a particular algorithm based on vanishing viscosity approach and long time behavior of an initial value problem. Finally, the predictions observed theoretically are validated by means of numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.