Abstract
We describe an algorithm for the numerical solution of second order linear ordinary differential equations in the high-frequency regime. It is based on the recent observation that solutions of equations of this type can be accurately represented using nonoscillatory phase functions. Unlike standard solvers for ordinary differential equations, the running time of our algorithm is independent of the frequency of oscillation of the solutions. We illustrate this and other properties of the method with several numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.