Abstract

In recent years the usefulness of fast Laplace solvers has been extended to problems on arbitrary regions in the plane by the development of capacitance matrix methods. The solution of the Dirichlet and Neumann problems for Helmholtz's equation is considered. It is shown that, by an appropriate choice of the fast solver, the capacitance matrix can be generated quite inexpensively. An analogy between capacitance matrix methods and classical potential theory for the solution of Laplace's equation is explored. This analogy suggests a modification of the method in the Dirichlet case. This new formulation leads to well-conditioned capacitance matrix equations which can be solved quite efficiently by the conjugate-gradient method. A highly accurate solution can, therefore, be obtained at an expense which grows no faster than that for a fast Laplace solver on a rectangle when the mesh size is decreased. 2 figures, 8 tables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.