Abstract

The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface is studied. This mechanism governs the propagation of shear ruptures in super brittle rocks at stress conditions of seismogenic depths. The current paper analyzes a built laboratory physical model, which demonstrates the process of fan waves propagation. Equations of the dynamics of the fan-structure as a mechanical system with a finite number of degrees of freedom are obtained. Computational algorithm, taking into account contact interaction of slabs, is worked out. The computations, showing the incomplete disclosure of fans with different opening angles due to fast or slow change in the velocity of rotation of the first slab, are performed. Comparison of the results of computations of length and velocity of a fan by means of a discrete model with laboratory measurements and observations shows good correspondence between the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call