Abstract
We prove that a general polynomial vector (f1,f2,f3) in three homogeneous variables of degrees (3,3,4) has a unique Waring decomposition of rank 7. This is the first new case we are aware of, and likely the last one, after five examples known since the 19th century and the binary case. We prove that there are no identifiable cases among pairs (f1,f2) in three homogeneous variables of degree (a,a+1), unless a=2, and we give a lower bound on the number of decompositions. The new example was discovered with Numerical Algebraic Geometry, while its proof needs Nonabelian Apolarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.