Abstract

AbstractIn literature, the cost of a partitioned fluid‐structure interaction scheme is typically assessed by the number of coupling iterations required per time step, while ignoring the internal iterations within the nonlinear subproblems. In this work, we demonstrate that these internal iterations have a significant influence on the computational cost of the coupled simulation. Particular attention is paid to how limiting the number of iterations within each solver call can shorten the overall run time, as it avoids polishing the subproblem solution using unconverged coupling data. Based on systematic parameter studies, we investigate the optimal number of subproblem iterations per coupling step. In addition, this work proposes a new convergence criterion for partitioned algorithms that is based solely on the number of subproblem iterations required to reach the subproblem residual tolerances and therefore does not require any additional convergence tolerance for the coupling loop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call