Abstract

We show that the number $g_n$ of labelled series-parallel graphs on $n$ vertices is asymptotically $g_n \sim g \cdot n^{-5/2} \gamma^n n!$, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random series-parallel graphs is asymptotically normal with linear mean and variance, and that the number of edges is sharply concentrated around its expected value. Similar results are proved for labelled outerplanar graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.